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Low-order parameterized methods presented are suitable for estimation of whipping responses without involved 
analysis.  Multi-variate regression of response over parameter space make possible estimates during early design of 
the whipping frequency, the peak whipping-ending moment, and the time lag of that peak whipping-bending moment 
following the peak of the slamming impulse. 
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INTRODUCTION 

An estimate of whipping response due to slamming can help 
quantify the non-stationary contribution to overall bending 
moment from response to impulsive loads.  A need has been 
identified for a quick and simple means of estimation suitable 
for early design.  This paper is focused primarily on the midship 
bending moment due to whipping. 

Recent work has focused on development of comprehensive 
numerical prediction methods for evaluating nonlinear, hull-
girder bending moments.  Papers by Fonseca, Antunes, and 
Soares (2006), and by Luo, Wan, and Gu (2007), present 
numerical models validated by test results.  Jensen and Mansour 
(2002 and 2003) propose closed-form expressions for long-term, 
wave-induced bending moments, including whipping. 

For early design work, these methods are generally too complex 
or require input that may not be available.  This paper presents 
the results from a similar numerical model, with the 
simplification of assumptions applied to define the input 
parameters.  This simple model is run over a range of input 
parameters.  The resulting multi-variant regression equations 
permit the estimation of modal frequency and midship bending 
moments due to whipping based on characteristic ship 
parameters. 
This paper focuses on the hull-girder response as a function of 
an assumed slam impulse.  Stavovy and Chuang (1976) propose 
a method for determining slamming pressures analytically.  
Ochi and Motter (1973) present a comprehensive method for 
predicting slamming loads.  Kapesenberg, Veer, Hackett, and 
Levadou (2003) and Luo, Wan, Qiu, and Gu (2007) discuss the 
duration and shape of the slamming impulse for stern slamming.  
The results of this paper are applicable to both bow and stern 
slamming due to the fore and aft symmetry of the distribution 
functions.  Jensen et al. (2008) present some simple expressions 
that they suggest are suitable for estimating the magnitude of 
slamming impulses associated with “slamming on flared bows, 
forward bottom parts and possibly flat stern areas of ships.” 

THE MODEL 

The modeling method is based on low-order parameterizations 
described in the next section.  Solutions have been obtained for 
a one-dimensional, free-free, non-uniform, Timoshenko beam 
finite element model implemented in NEiNASTRAN v9.1 
(NASTRAN). 
As background, the equations of a Timoshenko beam (without 
structural damping) are: 

w+
⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ θ−
∂
∂

κ
∂
∂

=
∂
∂

ρ
x
zGA

xt
zA 2

2

b  (1a) 

⎭
⎬
⎫

⎩
⎨
⎧ θ−
∂
∂

κ+
⎭
⎬
⎫

⎩
⎨
⎧

∂
θ∂

∂
∂

=
∂

θ∂
ρ

x
zGA

x
EI

xt
I

2

2

b , (1b) 

where: z deflection of the beam 
θ angular displacement 

bρ  density of the beam material 
A cross section area 
E elastic modulus 
G shear modulus 
I section moment of inertia 
κ Timoshenko shear coefficient 
w is the applied force distribution. 

In the general case that includes large deflections, the 
Timoshenko beam is unlike the more familiar Euler-Bernoulli 
beam in that the angular deflection is another variable and not 
approximated by the slope of the deflection.  However, for small 
deflections within the context of linear theory such as that 
implemented in NASTRAN, the angular deflection is commonly 
approximated by the slope of the deflection. 

κ, called the Timoshenko shear coefficient, depends on the 
geometry.  Normally, κ = 5 / 6 for a rectangular section.  The 
shear coefficient and its longitudinal distribution are important 
parameters affecting the accuracy of predicted natural 
frequencies of the hull girder bending modes.  Jensen (1983 and 
2001) provides a comparison of various methods for 
determining shear coefficients.   

w is a distributed load (force per length). 

The global equation (including damping) of this study is given 
as Equation 2 as follows: 
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where: m structural mass 
  infinite frequency added mass ∞A
 b damping 
 k structural stiffness 
 C hydrostatic stiffness 
 F

r
 applied external force (slamming force), 
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and T]z[ θ=ξ
rrr

 is a generalized response vector, where z
r

is the 

vector of nodal vertical displacements, and θ
r

 is the vector of 
nodal rotations (which, for small displacements, may be 
approximated by ). x/z ∂∂

All terms of Equation 2 are spatial functions of location along 
the ship's hull girder.  The  notation above all the vector terms 

indicates this dependence; i.e., ξ )t,x()t( ξ=
r

 and F )t,x(F)t( =
r

.  
The spatial dependence of the matrix terms is implicit; e.g., 

, [ , [ , and etc. )]x(m[]m[ ≡ )]x(A[]A ∞∞ ≡

∞

)]x(b[]b ≡

The infinite frequency added mass for vertical motion [  is 
obtained using Lewis form conformal mapping methods (Jensen 
2001).  As one approaches the infinite frequency limit, 

, so there is no radiation damping term 
corresponding to the infinite frequency added mass.  Thus, [  
represents only structural damping. 

]A

]B[]0[)](B[ ∞≡=∞→ω
]b

Solutions to Equation 2 are found using the linear transient 
response solver in NASTRAN.  Direct numerical integration is 
used in order to assign structural damping.  Each vessel is 
modeled as a massless beam, with mass concentrated at 25 
nodes (stations 0 through 20, plus two half-stations at either 
end).  The beam section properties taper linearly between nodes.   

The resulting multi-variate regression equations for response 
make possible early estimates of the whipping frequency, the 
peak whipping bending moment, and the time lag of that peak 
whipping bending moment following the peak of the slamming 
impulse. 

PARAMETERIZATION 

The low order parameterizations of virtual mass, hydrostatic, 
and effective beam stiffness distributions are related to basic 
design characteristics such as:  Length, displacement, pitch, 
radius of gyration, midship beam-to-draft ratio, waterplane area 
and inertia (or BML), midship stiffness (EI), and a distribution 
‘shape’ parameter.  The low-order characterization of the 
slamming impulse is characterized by the total impulse, the peak 
force, and the initial rise time for each peak. 
In order to limit the complexity and make this method suitable 
for early design, it was imperative to limit the parameters 
necessary to represent the various distributed ship properties 
represented by the matrices in Equation 2.  Many equation 
forms were considered, and the following one-parameter 
equation was selected: 

[ ]γ−−= }5.0)L/x{(21Y)x(y MID , (3) 
where: y is the distributed property 
  is the midship value of the distributed property MIDY
 L is the length over which the property is 

distributed 
 γ is the parameter of the distribution. 

Subject to 0 Lx ≤≤ , this describes a distribution that is 
symmetric about midship (x/L=0.5).  In principle, the 
distribution parameter can assume any positive value, but 
practical and realistic distributions are obtained with γ≥1.  At 
midship, MIDY)L5.0x(y ≡= .  When γ=1, the distribution is 
triangular, and as ∞→γ , the distribution becomes rectangular 
(as in a uniform, rectangular barge).  Figure 1 shows the non-
dimensional distribution function over a range of γ values.  
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Figure 1.  Example non-dimensional distribution functions. 

The following integrals of Equation 3 give, respectively, the 
non-dimensional area and the non-dimensional radius of 
gyration: 

∫=
L
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dx)x(yArea  (4) 
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These are shown in Figure 2, over the range 0<γ<10. 
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Figure 2.  Example non-dimensional distribution functions. 

The non-dimensional area corresponds to form coefficients such 
as CB and C
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B WP.  The non-dimensional gyradius relates to the 
mass moment of inertia of the hull or pitch added mass, and the 
longitudinal waterplane inertia.  With only a single parameter 
for γ for each distribution, it is not possible to jointly match both 
an area and a gyradius.  That would require higher-order 
parameterization.  Also, because the chosen single parameter 
distribution is symmetric, it is not possible to match longitudinal 
first moment characteristics such as LCG or LCF.  Despite these 
short-comings of the single parameter distribution, the ability to 
represent realistic ship distributions is acceptable for the 
purposes of early design. 

Hull Geometric Distributions 
As observed above, the one-parameter distribution adopted in 
the interest of simplicity leads to a fore-and-aft symmetry, as 
would be found in a true double-ended ship.  This, of course, is 
an over-simplification for realistic commercial and naval 
vessels, but hopefully acceptable for assessments of whipping 
during early design.  As a further simplification, it is presumed 
that the draft is constant over the entire length between forward 
and aft perpendiculars. 

Remaining important hull geometry distributions are then the 
underwater sectional area and waterplane half-breadth.  The 
underwater sectional area does not participate directly in 
Equation 2, but is necessary, along with the draft and waterline 
beam, to the estimation of hydrodynamic added mass using 
Lewis form conformal mapping. 

Figure 3 presents, in non-dimensional form, a comparison of a 
one-parameter fit using Equation 3 to the actual sectional area 
distribution of the S-175 containership at 9.5 m draft.  The 
ordinal values are all non-dimensionalized by the actual midship 
sectional area of the S-175.  The distribution factor for sectional 
area, γ1, is: 

1
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where C10 is the midship section area coefficient. 
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Figure 3.  Comparison of single-parameter sectional area 
distribution for a S-175 container ship to actual at 9.5 m draft. 

Figure 4 compares, in non-dimensional form, a one-parameter 
fit using Equation 3 to the actual waterplane half-breadth 
distribution of the S-175 containership at 9.5 m draft.  The 
ordinal values are all non-dimensionalized by the actual midship 
half-breadth of the S-175.  In the fit shown in Figure 4 for the 
half-breadth, both the fit midship half-breadth and the waterline 
length were also treated as parameters, which resulted in a small 
improvement in the quality of the fit.  However, in the analysis 
that follows and in the early design whipping analysis method 
proposed in this paper, all distributions are presumed to extend 
over a common length, and midship ordinal values are 
presumably those available during early design.  However, if 
actual distributions are available during early design it should be 
possible to obtain higher fidelity fits by adjusting the nominal 
length and/or midship ordinal values.  The distribution factor for 
half-breadth, γ2, used in the subsequent analyses is: 
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Figure 4.  Comparison of single-parameter waterplane, 
half-breadth distribution for S-175 container ship to actual at 
9.5 m draft. 



The distribution of half-breadths not only figures in the 
estimation of hydrodynamic added mass, described further 
below, but also directly in the hydrostatic stiffness term [C] in 
Equation 2.  The nodal hydrostatic stiffnesses in z are: 

)b2(gc ii ρ= , (8) 
where:  is the iic th nodal hydrostatic stiffness 
  is the half-breadth of the iib th node 
 ρ fluid density 
 g is the acceleration of gravity. 

Weight Distributions 
Figure 5 compares two different one-parameter fits using 
Equation 3 with the standard weight distribution published in 
SEAWAY documentation (Journée 2001) for the S-175 
containership at 9.5 m draft.  The ordinal values are non-
dimensionalized by 10gAρ , where  is the midship 
underwater sectional area.  Also, superimposed on the figure for 
reference, is the published weight distribution for the flexible 
S-175 model described in Wu and Hermundstad (2002). 
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Figure 5.  Comparison of single-parameter weight distribution 
for a S-175 container ship to actual at 9.5 m draft. 

A single-parameter distribution with 3γ =1.609 and L/LBP=1.08 
matches the weight of the S-175.  A single parameter 
distribution with 3γ =1.001 (nearly triangular) and 
L/LBP=1.229 minimizes the mean squared error between the fit 
and the actual S-175 weight distribution. 

The single parameter distribution matching weight appears to be 
a reasonable approximation for early design.  Note that the 
current single parameter weight distribution formulation cannot 
model a load distribution with heavy ends. 

The section-wise rotational inertia for the Timoshenko beam is 
approximated as a function of segment length and depth, as 
follows: 

)HL(CmI 22
seg

2
ksegyy += . (9) 

A value of 0.397 is assumed for the constant , based on 
guidance (Vossers 1962) for thin-walled, rectangular sections.  
This value approximates the average section-wise rotational 

inertia calculated from a 3D finite element model for a fine hull 
form. 

kC

Hydrodynamic Added Mass 
Infinite frequency, heave added mass is estimated using Lewis 
form sections (Lewis 1929, and Jensen 2001).  Lewis form 
conformal mapping requires, as input, only the local beam-to-
draft ratio, , of the 2-D section, and the local sectional 
area coefficient, 

xx H/B
)HB/(AC xxxx = .  Figure 6 presents the 

distribution of non-dimensional added mass, , 
estimated using the Lewis form method for the S-175 
containership. 

)A/(AC xM ρ= ∞
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Figure 6.  Comparison of heave added mass estimated by the 
Lewis method based on actual and fit distributions of beam, 
draft, and section area for a S-175 container ship at 9.5 m draft. 

Figure 6 provides a comparison of the heave added mass 
calculated for both actual and fit distributions of beam, draft, 
and section area for the S-175 container ship at 9.5 m draft.   

Structural Properties 
Structural Damping:  There is no radiation damping term 
corresponding to the infinite frequency added mass.  Thus, only 
structural damping is assumed to be effective at whipping 
frequencies.  Structural damping is modeled in NASTRAN as 
equivalent viscous damping, such that the input structural 
damping value only holds at one frequency and varies linearly at 
other frequencies.  To simplify the model a constant value of 
2%, critical damping was selected and applied at 2 Hz.   

Beam Bending Stiffness, EI:  Sectional inertia of the hull girder 
midship section is input as the ratio of the actual inertia to the 
ABS-required inertia (ABS Steel Vessel Rules 3-2-1/3.7).  A 
range of values from 1 to 4 was selected for this variable, 
assuming that the ABS hull bending strength standard sets the 
minimum allowable inertia.   

The distribution of sectional inertia is determined in accordance 
with Equation 3, the midship section inertia, and a fourth 
distribution variable for sectional inertia, γ4.  Figure 7 compares 
the one-parameter fit for sectional inertia using Equation 3, with 
a published (Wu and Hermundstad 2002) sectional inertia 
distribution for the S-175 containership. 
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Figure 7.  Comparison of single-parameter sectional inertia 
distribution for S-175 container ship to actual data. 

Beam shear stiffness, AκG:  The section-wise shear stiffness for 
the beam is given by: 

GAκ , (10) 

where: A is the structural section area 
 κ  is the shear factor 
 G is the shear modulus. 

For simplicity, the shear factor is calculated from the assumed 
midship section, described above using Jensen's projected area 
method (Jensen 2001).  Further development of this parameter 
in the model is warranted, given the strong influence of shear 
area on the resulting modal frequencies and given the known 
shortcomings of the chosen approach. 

Structural section area of the midship section is estimated using 
a crude approximation of a typical cross section.  The typical 
cross section is assumed to consist of shell, inner bottom, and 
inner side plating elements.  A nominal shell plate thickness 
equal to 1.35 times ABS minimum thickness (ABS Steel Vessel 
Rules 3-2-2/3.17.2) is assumed to account for effective 
un-modeled stiffeners.  Figure 8 illustrates the typical cross-
section model.  The distribution for sectional inertia is used to 
represent the structural section area distribution.   

 
Figure 8.  Typical cross-section model for calculating the 
midship structural section area.   

Slam Impulse:  The slam impulse, defined as , is assumed 

to be held constant and applied at station 3.  The impulse 
duration, , and triangular shape presented by Ochi and Motter 
(1973), are used.  

∫ dtF

dT
Figure 9 illustrates the impulse: 

g
L02487.0Td =  [seconds], (11) 

where L is the ship length. 

 
Figure 9.  Slam impulse definition. 

Since the modeled dynamic system is linear, if  is held 
constant, the impulse is linear with  and the midship 
bending moment scales linearly with .  The value of  
assumed throughout this study is 10,000 kN, and the impulse is 
constant at 500 kN-s. 

dT

maxF

maxF maxF

Methods to determine slam force, F(t), from hull geometry and 
vessel motions are not included in the scope of this paper.  
Jensen et al. (2008) provide simple equations from which the 
rise time and magnitude of slam impulse may be estimated.  
They suggest that their methods are suitable for bottom, bow 
flare, and possible stern slamming. 
The methods here presented are not explicitly restricted to 
bottom slamming; but, by virtue of the longitudinal point of 
application of our slam impulse (i.e., 15% aft of F.P. or 15% 
forward of A.P.) and the modeled duration and shape, the 
regression equations presented later in this paper are probably 
most appropriate to bottom slamming, which possibly includes 
stern bottom slamming.  However, for bow blare slam forces 
applied near the same location (i.e., 15% aft of F.P.), the 
regression equations given in this paper may provide a first 
approximation provided that the magnitude of the applied 
impulse is appropriate to a bow flare slam.  As the model is 
linear bow bottom slamming followed by a bow flare slam, it 
could be modeled using linear superposition, though the 
development of this approach is left to future research. 
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RESULTS 

A total of 6,561 distinct whipping cases were run using the 
foregoing described NASTRAN model.  These 6,561 cases were 
generated with the parameter variations documented in Table 1. 

Table 1.  Parameter variations for 6,561 cases. 

Parameter From To Step 

L/B 5 9 2 
B/T 2 4 1 
CB  

WMTC 2009 Hutchison et al. Page 6 

B 0.6 0.8 0.1 
CWP 0.6 0.9 0.15 

3γ  for weight 1 5 2 

4γ  for structural inertia 1 5 2 

κ  shear coefficient 0.25 0.5 0.125 
I/IABS 1 4 1.5 

Several variables were held constant in defining the matrix of 
cases:  B/D = 1.75, C10 = 0.95, and L = 175 m.   

The peak midship bending moment, the time, , at which the 
peak midship bending moment occurs, the two-node

tΔ
1 ‘free-free’ 

modal frequency, , and the average zero-crossing period, 2f ZT , 
of the first cycles in the first six seconds, were all captured as 
dependent data. 

The following eight non-dimensional values were treated as 
independent variables. 
Table 2.  Non-dimensional independent variables. 

1x  B/L Beam-to-length ratio 

2x  T/L Draft-to-length ratio 

3x  CBB Block coefficient 

4x  CWP Waterplane coefficient 

5x  4γ  Distribution factor for structural inertia 

6x  
]L01.0[

I
4

 
Midship structural inertia 
non-dimensionalized by 0.01 L4

7x  
]L01.0[

A
2

SHEAR  
Midship structural cross-section shear 
area non-dimensionalized by 0.01 L2

8x  
L

k yy  
Pitch mass radius of gyration 
non-dimensionalized by L 

 

The four non-dimensional dependent variables are as described 
in Table 3. 

                                                           

1 The convention in this paper for mode numbering corresponds 
to the number of nodes (e.g., heave is mode 0, pitch is mode 1, 
and the first elastic mode shape is mode 2). 

Table 3.  Non-dimensional dependent variables. 

1y  
gL

MBMax
)Impulse(

...  Non-dimensional peak whipping 
bending moment amidship per 
unit impulse. 

2y  

g/L
tΔ  

Non-dimensional time at which 
the peak whipping bending 
moment amidship occurs relative 
to the start of the impulse. 

3y  
L/g

2f  
Non-dimensional two-node 
‘free-free’ modal frequency. 

4y  

g/L
TZ  

Non-dimensional average zero-
crossing period of whipping 
response. 

 

Using least-squared error regression methods, the dependent 
responses are fit to empirical quadratic multivariate models of 
the following form: 

∑ ∑∑
= = =

++=
8

1i

8

1i

8

ij
jik,ijik,ikk xxcxbay , (12) 

where:  are the empirical (least squares) constant 
terms associated with the k

ka
th response 

  are the empirical (least squares) linear 
coefficients for the k

k,ib
th response 

  are the empirical (least squares) quadratic 
coefficients for the k

k,ijc
th response. 

Tables of these least squares coefficients are provided in 
Appendix A. 
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Figure 10.  Correlogram between regression Equation 12 and 
peak midship whipping bending moment directly computed by 
NASTRAN. 

Figure 10 presents a correlogram between actual peak non-
dimensional midship bending moment, per unit impulse as 
computed by NASTRAN, and the corresponding regression 
equation.  A correlation coefficient of ρ = 0.972 is achieved, 



with a standard error of 7.3%; this is thought to be quite 
acceptable for early design. 
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The regression equation for non-dimensional bending moment, 
whose coefficients are given in Appendix A and whose 
correlation is illustrated in Figure 10, are all for the constant 
standard slam force distribution, with =0.10 s, 

=10,000 kN, and a resulting impulse of 500 kN-s.  As 
previously observed, provided that the slam duration is held 
constant, the peak midship whipping bending moment will scale 
linearly with either  or impulse. 

dT

maxF

maxF

Figure 11 shows the correlogram for the time to maximum 
whipping bending moment.  The correlation is not as good as 
that for bending moment or modal frequency, being only 
ρ=0.858, and the standard error is 13.9%.  However, it should be 
observed that the distribution range is quite small when 
compared to wave and/or pitch periods. 
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Figure 11.  Correlogram between regression Equation 12 and 
time of occurrence of peak midship whipping bending moment 
computed by NASTRAN. 

Figure 12 shows the correlogram between the regression 
equation for the two-node ‘free-free’ modal frequency and the 
corresponding values computed by NASTRAN.  This regression 
‘fit’ results in a correlation coefficient of ρ=0.975, and the 
standard error is 7.4%. 
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Figure 12.  Correlogram between regression Equation 12 and 
the two-node ‘free-free’ modal frequency computed by 
NASTRAN. 

Figure 13 shows the correlogram for the average zero-crossing 
period.  The correlation coefficient is ρ=0.961, and the standard 
error is 7.7%. 
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Figure 13.  Correlogram between regression Equation 12 and 
average zero-crossing period computed by NASTRAN. 

VALIDATION 

This section compares the results of the presented single 
parameter distribution method with directly computed 
NASTRAN results for actual distributions, and with published 
numerical or experimental results.  Further, it compares the 
presented regression results with direct NASTRAN calculations.   



Comparison of NASTRAN to Published Results 
One might expect a robust set of validation data, given the large 
body of work on the subject of whipping response.  However, in 
practice, most papers fall short of the full documentation 
necessary to validate this work.  Definitive data on the 
International Towing Tank Conference (ITTC) standard S-175 
containership, arguably the most extensively studied vessel, is 
particularly elusive in the literature.  The variation in first 
natural frequencies of the S-175 hull reported in Wu and 
Hermundstad (2002), Ramos, Incecik, and Soares (2000), and 
Gu, Shen, and Moan (2003), of 1.33, 1.17, and 1.60, 
respectively, reflects variation in assumed vessel parameters.   
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Weight distribution, structural stiffness, and shear area are the 
most commonly omitted vessel parameters.  On the loading side, 
the slamming impulse is not always documented, and the 
associated slam-induced whipping moment is not isolated from 
the total bending moment.   

Examples of the application of the presented method are 
provided for a naval frigate studied in both McTaggart et al. 
(1997) and Fonseca, Antunes, and Soares (2006).  Table 4 
compares the natural frequencies for the first three bending 
modes.  The third and fourth columns compare respectively, the 
• estimated natural frequencies predicted by NASTRAN 

using the distributions generated from single parameter 
fits, and  

• corresponding estimates using “actual” weight, inertia, and 
area distributions. 

Table 4.   Natural frequencies for the first three vertical bending 
modes for the McTaggart frigate. 
 

Natural Frequency [Hz] 
Mode McTaggart 

(1997) 
Fonseca 

(2006) 
NASTRAN 

Single 
Parameter 

Distributions 

NASTRAN 
Actual 

Distributions 

2 1.42 1.30 1.51 1.30 
3 2.69 3.00 2.86 2.52 
4 4.48 5.49 4.16 3.87 

The whipping vertical bending moment, calculated by Fonseca, 
Antunes, and Soares (2006) for the McTaggart frigate, is 
approximately 94 Nm per unit slam impulse centered about 
station 4.  The present NASTRAN model predicts a value of 124 
Nm per unit slam impulse centered at station 3 and the 
regression equations predict a value of 92 Nm per unit slam 
impulse.   

Examples of the application of the presented method are also 
provided for the S-175 containership studied in Wu and 
Hermundstad (2002), Ramos et al. (2000), and Gu et al. (2003).  
Comparisons of the first three bending modal frequencies are 
provided in Table 5.  Note that the shear stiffness and shear 
distribution of the S-175 model are not published in these 
references.  The degrading correlation of the natural frequencies 
for the presented method to experimental data at higher modes is 
attributed to the missing shear distribution information, and the 
poor approximation of inertia outside midships provided by the 
one parameter inertia distribution fit shown in Figure 7 
(presented on page 5).   

Table 5.   Natural frequencies for the first three vertical bending 
modes for the S-175 containership. 
 

Natural Frequency [Hz] 
Mode Wu and 

Hermundstad 
(2002) 

Ramos 
(2000) 

Gu 
(2003) 

NASTRAN 
Single 

Parameter 
Distributions 

2 1.33 1.17 1.60 1.35 
3 3.24 3.16  2.52 
4 6.16 6.44  3.67 

 

Comparison of Regression Predictions 
Table 6 provides results of the regression equations and the 
NASTRAN models for the S-175 and McTaggart frigate.  The 
errors found between regression and directly calculated 
NASTRAN results are larger than one might expect based on 
the standard deviation of the fit.  However, two regression 
parameters fall outside the data range for each vessel.  Both the 
frigate and containership are fine form vessels with block 
coefficients less than 0.6, the minimum value included in the 
evaluation set.  In the case of the containership the weight 
distribution factor exceeds the range of parametric variation.  
The frigate’s shear area is lower than the minimum value in the 
assumed parameter range.   

Table 6.  Comparison of regression results and direct 
calculation. 
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S-175  

Max B.M. 
N-m / unit 

impulse 125.79 150.15 -16.2% 
Dt s 0.24 0.24 0.2% 

2f  Hz 1.20 1.35 -10.8% 

ZT  s 0.84 0.75 11.8% 
Frigate 

Max B.M. 
N-m / unit 

impulse 92.37 123.86 -25.4% 
Dt s 0.29 0.22 31.9% 

2f  Hz 1.23 1.51 -18.4% 

ZT  s 0.88 0.67 30.9% 
 

Better agreement between the NASTRAN and regression results 
comes from arbitrarily setting the outlying parameters to values 
within the evaluation range.  The errors in bending moment 
calculated for these modified models were 0.6 and 1.6 times 
standard deviation for the frigate and S-175, respectively.  By 
comparison, Table 6 shows values of 2.2 and 3.5 times standard 
deviation.   



CONCLUSIONS JENSEN, J.J., (1983).  “On the Shear Coefficient in 
Timoshenko’s Beam Theory,” Journal of Sound and 
Vibration, Vol. 87(4), pp 621-635.   Eight independent variables describing non-uniform beam ship 

whipping cases were varied over three values each.  Infinite 
frequency hydrodynamic added mass distributions for each case 
were generated using Lewis sections.  NEiNASTRAN was used 
to predict the whipping response of each of the resulting six-
thousand five-hundred and sixty-one (6561) different whipping 
cases.  Multiple linear regression models were fit to the resulting 
data set, resulting in excellent fits for the peak midship bending 
moment, two-node ‘free-free’ wet natural frequency, and 
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APPENDIX A – Regressed Coefficients for Equation 12 

R2: 331.57 0.698 581.83 2.36
ρ: 0.972 0.858 0.975 0.961

7.3% 13.9% 7.4% 7.7%

ak = 1.471E+01 ak = 6.847E-02 ak = 6.433E+00 ak = -2.088E-01
i j ρ bi,k, cij,k ρ bi,k, cij,k ρ bi,k, cij,k ρ bi,k, cij,k

1 0.2754 -5.462E+01 -0.3414 2.072E-01 0.3991 -2.957E+01 -0.3923 1.164E+00
2 0.3702 -7.710E+01 -0.3899 2.308E-01 0.5003 -1.102E+02 -0.4664 2.292E+00
3 0.0705 1.129E+01 0.0005 -7.537E-02 -0.0512 -5.029E+00 -0.0181 -5.177E-02
4 0.5386 -5.922E+00 -0.2048 -3.737E-02 0.2307 5.692E+00 -0.2834 1.201E-01
5 0.0656 5.039E-01 -0.0051 -2.477E-02 0.4353 2.111E+00 -0.1755 -4.111E-02
6 0.3266 3.435E-01 -0.4099 -7.965E-04 0.2746 1.536E-01 -0.4528 -1.072E-02
7 -0.1220 8.331E+00 0.0823 -6.450E-02 -0.2176 1.404E+00 0.1733 9.059E-02
8 0.3594 -6.563E+01 -0.0529 3.180E-01 0.1094 1.337E+01 -0.1441 1.898E+00
1 1 -0.2720 5.502E+01 0.3400 -2.518E-01 -0.3946 5.753E+01 0.3900 -2.567E+00
1 2 -0.3527 1.099E+02 0.4029 1.479E+00 -0.4882 1.831E+02 0.4722 1.696E+00
1 3 -0.2172 1.284E+01 0.3070 -2.563E-01 -0.3792 3.082E+01 0.3437 -9.184E-01
1 4 0.5167 -3.498E-01 -0.3988 4.563E-01 0.4519 -1.928E+01 -0.4794 1.326E+00
1 5 0.0540 -5.436E-02 -0.1425 9.543E-04 -0.2173 -3.807E+00 -0.0015 1.987E-02
1 6 -0.1554 -3.650E-01 0.2160 -7.324E-03 -0.0773 -4.141E-02 0.2338 -1.563E-02
1 7 -0.1928 3.814E-01 0.1898 -3.743E-01 -0.3059 1.149E+00 0.2727 4.947E-01
1 8 -0.3630 8.506E+01 0.3322 4.845E-01 -0.4027 -3.238E+01 0.4079 7.237E-01
2 2 -0.3443 1.208E+02 0.3775 -9.983E-01 -0.4664 2.252E+02 0.4472 -5.261E+00
2 3 0.3364 -3.228E+01 -0.3736 4.778E-01 0.4922 -1.813E+01 -0.4409 2.009E+00
2 4 -0.5236 6.991E+01 0.4353 -1.885E-01 -0.5322 5.760E+01 0.5264 -2.362E+00
2 5 0.1583 -5.654E-01 -0.2307 3.526E-02 -0.0520 -5.385E-01 -0.1217 9.681E-03
2 6 -0.0386 -3.653E-01 0.1165 -6.407E-03 0.0570 -6.405E-01 0.1121 -2.013E-02
2 7 0.2787 -7.750E+00 -0.2664 -3.240E-01 0.4059 -1.168E+01 -0.3639 -4.600E-01
2 8 -0.4281 3.570E+01 0.3866 -7.415E-01 -0.5043 3.748E+01 0.4800 3.981E-01
3 3 0.0706 9.722E-01 -0.0001 -8.601E-02 -0.0510 2.760E+00 -0.0187 -2.552E-01
3 4 0.4065 -9.763E+00 -0.1744 1.887E-01 0.2189 -3.845E+00 -0.2253 4.467E-01
3 5 0.0795 4.177E-02 -0.0034 3.673E-03 0.4169 1.681E-01 -0.1730 8.267E-03
3 6 -0.3241 -3.061E-03 0.3850 4.694E-04 -0.2452 -1.134E-01 0.4315 5.633E-04
3 7 -0.0942 9.718E-01 0.0793 1.857E-02 -0.2218 -2.264E+00 0.1585 -3.013E-02
3 8 0.1486 -2.425E+01 -0.0314 2.417E-01 0.1035 2.206E+00 -0.0674 4.822E-01
4 4 0.5406 -4.345E+00 -0.2037 -2.237E-02 0.2327 -5.130E+00 -0.2844 1.688E-01
4 5 0.0973 -1.991E-01 -0.0626 6.040E-03 -0.3303 -7.050E-01 0.0818 8.467E-03
4 6 -0.1484 -1.134E-01 0.3371 -1.285E-03 -0.2027 4.257E-02 0.3505 1.015E-04
4 7 0.3222 -2.520E+00 -0.1569 -5.441E-02 0.2850 1.469E+00 -0.2666 -2.221E-01
4 8 -0.6294 6.131E+01 0.2042 -3.062E-01 -0.2529 1.299E+01 0.3112 -2.442E+00
5 5 -0.0585 -1.587E-02 0.0090 -2.281E-04 -0.3951 -1.229E-01 0.1585 2.652E-03
5 6 0.2693 2.319E-03 -0.3034 -1.708E-04 0.5264 2.290E-02 -0.4287 -2.329E-04
5 7 0.0187 -8.488E-02 -0.0636 1.028E-02 -0.2228 3.401E-01 0.0419 4.916E-03
5 8 -0.0099 -9.619E-01 -0.0117 7.214E-02 -0.4098 -1.829E+00 0.1514 1.872E-02
6 6 -0.2494 -1.213E-03 0.3161 8.191E-05 -0.1805 -3.512E-03 0.3545 2.573E-04
6 7 0.1744 5.928E-02 -0.2624 4.366E-04 0.0921 3.106E-02 -0.2525 3.415E-05
6 8 -0.2664 -4.030E-01 0.3972 -4.113E-03 -0.2565 3.061E-01 0.4244 -5.006E-04
7 7 0.1241 -3.820E+00 -0.0827 1.292E-01 0.2163 -3.422E+00 -0.1707 -4.623E-02
7 8 0.1926 -1.809E+01 -0.0902 4.560E-02 0.2320 4.820E+00 -0.1970 -2.242E-01
8 8 -0.3591 3.954E+01 0.0528 -9.345E-01 -0.1097 -6.097E+01 0.1442 -2.237E-01

f2 [N.D.]

Std. Error:

Constant:

Tavg [N.D.]

k=1 k=2 k=3 k=4

B.M. [N.D.] Δt [N.D.]
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APPENDIX B – S-175 Containership Example 
The following example is for the 175 m S-175 containership. 

B.M. [N.D.] Δt [N.D.] f2 [N.D.] Tavg [N.D.]
1.471E+01 6.847E-02 6.433E+00 -2.088E-01

xi xj i j k=1 k=2 k=3 k=4
x1 B/L 0.145 1 -7.928E+00 3.008E-02 -4.292E+00 1.689E-01
x2 T/L 0.054 2 -4.185E+00 1.253E-02 -5.984E+00 1.244E-01
x3 CB 0.572 3 6.460E+00 -4.311E-02 -2.877E+00 -2.962E-02
x4 CWP 0.696 4 -4.122E+00 -2.601E-02 3.962E+00 8.360E-02
x5 γ4 6.214 5 3.131E+00 -1.539E-01 1.312E+01 -2.555E-01
x6 I/[0.01 L]4 15.324 6 5.264E+00 -1.220E-02 2.353E+00 -1.642E-01
x7 ASHEAR/[0.01 L]2 0.166 7 1.381E+00 -1.069E-02 2.326E-01 1.501E-02
x8 kyy/L 0.240 8 -1.575E+01 7.631E-02 3.210E+00 4.555E-01

0.145 0.145 1 1 1.159E+00 -5.304E-03 1.212E+00 -5.407E-02
0.145 0.054 1 2 8.656E-01 1.166E-02 1.443E+00 1.336E-02
0.145 0.572 1 3 1.066E+00 -2.128E-02 2.559E+00 -7.625E-02
0.145 0.696 1 4 -3.533E-02 4.610E-02 -1.948E+00 1.339E-01
0.145 6.214 1 5 -4.903E-02 8.607E-04 -3.434E+00 1.792E-02
0.145 15.324 1 6 -8.118E-01 -1.629E-02 -9.211E-02 -3.477E-02
0.145 0.166 1 7 9.174E-03 -9.003E-03 2.764E-02 1.190E-02
0.145 0.240 1 8 2.963E+00 1.688E-02 -1.128E+00 2.521E-02
0.054 0.054 2 2 3.561E-01 -2.942E-03 6.636E-01 -1.550E-02
0.054 0.572 2 3 -1.002E+00 1.484E-02 -5.631E-01 6.238E-02
0.054 0.696 2 4 2.641E+00 -7.122E-03 2.176E+00 -8.926E-02
0.054 6.214 2 5 -1.907E-01 1.189E-02 -1.817E-01 3.266E-03
0.054 15.324 2 6 -3.039E-01 -5.330E-03 -5.328E-01 -1.674E-02
0.054 0.166 2 7 -6.972E-02 -2.915E-03 -1.051E-01 -4.138E-03
0.054 0.240 2 8 4.651E-01 -9.661E-03 4.883E-01 5.187E-03
0.572 0.572 3 3 3.181E-01 -2.814E-02 9.030E-01 -8.350E-02
0.572 0.696 3 4 -3.887E+00 7.511E-02 -1.531E+00 1.779E-01
0.572 6.214 3 5 1.485E-01 1.306E-02 5.976E-01 2.938E-02
0.572 15.324 3 6 -2.683E-02 4.115E-03 -9.939E-01 4.937E-03
0.572 0.166 3 7 9.212E-02 1.760E-03 -2.146E-01 -2.856E-03
0.572 0.240 3 8 -3.329E+00 3.318E-02 3.029E-01 6.620E-02
0.696 0.696 4 4 -2.105E+00 -1.084E-02 -2.485E+00 8.178E-02
0.696 6.214 4 5 -8.610E-01 2.612E-02 -3.049E+00 3.662E-02
0.696 15.324 4 6 -1.210E+00 -1.370E-02 4.540E-01 1.082E-03
0.696 0.166 4 7 -2.906E-01 -6.275E-03 1.694E-01 -2.562E-02
0.696 0.240 4 8 1.024E+01 -5.115E-02 2.169E+00 -4.079E-01
6.214 6.214 5 5 -6.127E-01 -8.809E-03 -4.744E+00 1.024E-01
6.214 15.324 5 6 2.208E-01 -1.626E-02 2.181E+00 -2.218E-02
6.214 0.166 5 7 -8.740E-02 1.058E-02 3.502E-01 5.062E-03
6.214 0.240 5 8 -1.435E+00 1.076E-01 -2.728E+00 2.791E-02

15.324 15.324 6 6 -2.849E-01 1.923E-02 -8.247E-01 6.041E-02
15.324 0.166 6 7 1.505E-01 1.109E-03 7.886E-02 8.672E-05
15.324 0.240 6 8 -1.482E+00 -1.513E-02 1.126E+00 -1.841E-03
0.166 0.166 7 7 -1.049E-01 3.549E-03 -9.397E-02 -1.270E-03
0.166 0.240 7 8 -7.195E-01 1.813E-03 1.917E-01 -8.915E-03
0.240 0.240 8 8 2.277E+00 -5.383E-02 -3.512E+00 -1.289E-02

3.036E+00 5.691E-02 5.088E+00 1.985E-01

125.79 0.240 1.204 0.839
[m/s] [s] [Hz] [s]

Constant:

Non-dimensional Results:

Dimensional Results:
 

The dimensional result for the bending moment is for unit impulse.  The dimensional bending moment for an impulse of 500 kN-s is 
therefore 62,895 kN-m. 
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APPENDIX C – Frigate Example 
The following example is for the 124.5 m frigate studied by McTaggart et al. (1997). 

B.M. [N.D.] Δt [N.D.] f2 [N.D.] Tavg [N.D.]
1.471E+01 6.847E-02 6.433E+00 -2.088E-01

xi xj i j k=1 k=2 k=3 k=4
x1 B/L 0.119 1 -6.493E+00 2.463E-02 -3.515E+00 1.384E-01
x2 T/L 0.040 2 -3.078E+00 9.214E-03 -4.400E+00 9.149E-02
x3 CB 0.496 3 5.601E+00 -3.738E-02 -2.495E+00 -2.568E-02
x4 CWP 0.639 4 -3.784E+00 -2.388E-02 3.637E+00 7.675E-02
x5 γ4 1.991 5 1.003E+00 -4.932E-02 4.204E+00 -8.185E-02
x6 I/[0.01 L]4 5.074 6 1.743E+00 -4.041E-03 7.792E-01 -5.437E-02
x7 ASHEAR/[0.01 L]2 0.076 7 6.342E-01 -4.910E-03 1.068E-01 6.897E-03
x8 kyy/L 0.228 8 -1.495E+01 7.246E-02 3.047E+00 4.325E-01

0.119 0.119 1 1 7.775E-01 -3.558E-03 8.130E-01 -3.627E-02
0.119 0.040 1 2 5.214E-01 7.021E-03 8.690E-01 8.049E-03
0.119 0.496 1 3 7.572E-01 -1.511E-02 1.817E+00 -5.415E-02
0.119 0.639 1 4 -2.657E-02 3.466E-02 -1.465E+00 1.007E-01
0.119 1.991 1 5 -1.287E-02 2.259E-04 -9.011E-01 4.703E-03
0.119 5.074 1 6 -2.201E-01 -4.417E-03 -2.498E-02 -9.429E-03
0.119 0.076 1 7 3.452E-03 -3.387E-03 1.040E-02 4.477E-03
0.119 0.228 1 8 2.304E+00 1.312E-02 -8.772E-01 1.960E-02
0.040 0.040 2 2 1.926E-01 -1.591E-03 3.588E-01 -8.384E-03
0.040 0.496 2 3 -6.391E-01 9.461E-03 -3.590E-01 3.978E-02
0.040 0.639 2 4 1.783E+00 -4.809E-03 1.469E+00 -6.026E-02
0.040 1.991 2 5 -4.494E-02 2.802E-03 -4.280E-02 7.695E-04
0.040 5.074 2 6 -7.399E-02 -1.298E-03 -1.297E-01 -4.076E-03
0.040 0.076 2 7 -2.355E-02 -9.848E-04 -3.550E-02 -1.398E-03
0.040 0.228 2 8 3.247E-01 -6.745E-03 3.409E-01 3.622E-03
0.496 0.496 3 3 2.392E-01 -2.116E-02 6.790E-01 -6.278E-02
0.496 0.639 3 4 -3.094E+00 5.980E-02 -1.219E+00 1.416E-01
0.496 1.991 3 5 4.124E-02 3.627E-03 1.660E-01 8.164E-03
0.496 5.074 3 6 -7.703E-03 1.181E-03 -2.854E-01 1.418E-03
0.496 0.076 3 7 3.669E-02 7.011E-04 -8.550E-02 -1.138E-03
0.496 0.228 3 8 -2.741E+00 2.731E-02 2.493E-01 5.450E-02
0.639 0.639 4 4 -1.774E+00 -9.134E-03 -2.095E+00 6.893E-02
0.639 1.991 4 5 -2.533E-01 7.684E-03 -8.970E-01 1.077E-02
0.639 5.074 4 6 -3.678E-01 -4.164E-03 1.380E-01 3.290E-04
0.639 0.076 4 7 -1.226E-01 -2.647E-03 7.144E-02 -1.081E-02
0.639 0.228 4 8 8.927E+00 -4.459E-02 1.891E+00 -3.556E-01
1.991 1.991 5 5 -6.290E-02 -9.043E-04 -4.870E-01 1.051E-02
1.991 5.074 5 6 2.343E-02 -1.725E-03 2.314E-01 -2.353E-03
1.991 0.076 5 7 -1.286E-02 1.558E-03 5.154E-02 7.451E-04
1.991 0.228 5 8 -4.364E-01 3.273E-02 -8.300E-01 8.491E-03
5.074 5.074 6 6 -3.124E-02 2.109E-03 -9.042E-02 6.623E-03
5.074 0.076 6 7 2.290E-02 1.687E-04 1.200E-02 1.319E-05
5.074 0.228 6 8 -4.660E-01 -4.756E-03 3.539E-01 -5.787E-04
0.076 0.076 7 7 -2.214E-02 7.489E-04 -1.983E-02 -2.679E-04
0.076 0.228 7 8 -3.138E-01 7.910E-04 8.362E-02 -3.889E-03
0.228 0.228 8 8 2.053E+00 -4.852E-02 -3.166E+00 -1.162E-02

2.643E+00 8.145E-02 4.393E+00 2.461E-01

92.37 0.290 1.233 0.877
[m/s] [s] [Hz] [s]

Constant:

Non-dimensional Results:

Dimensional Results:
 

The dimensional result for the bending moment is for unit impulse.  The dimensional bending moment for an impulse of 500 kN-s is 
therefore 46,183 kN-m. 
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