

Propulsion Plant Selection and System Integration for Naval Vessels

Georg E. Scheuing Project Manager / Naval Surface Craft

Propulsion plant requirements for naval applications have seen during the last years on one side a change to mainly commercial requirements in today's procurement programs. Nevertheless on the other side vessel operators are setting up more stringent requirements for noise, vibrations and shock both to improve combat behaviour as well as to improve the comfort for the crew on their new vessels.

In parallel also the mission profiles for naval vessels have changed due to new tasks to be performed like international peacekeeping missions, fight against terrorism/asymmetrical threads, etc. These new missions and threads also influence the selection of propulsion systems.

Main driving factors for vessel and propulsion system design are tightened defence budgets, forcing the procurement agencies to scrutinize their requirements closely. They are specifying more versatile, but less sophisticated ships, looking for components-of-the-shelf (COTS) featuring reduced Life Cycle Costs (LCCs), long overhaul intervals, require low manning and allow for easy maintenance.

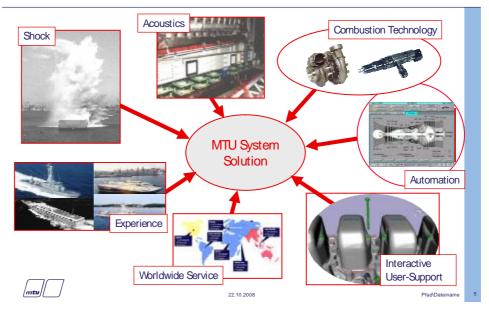
Selection of propulsion plant components is one of the most important factors to fulfil the above customer requirements. Individual design, specifications and test instructions of the various components do not guarantee the optimum overall performance of the whole propulsion system. Solutions for the respective technical and commercial demands with respect to the whole propulsion system and the responsibility for the complete propulsion plant in one hand will result in reduced interface problems and furthermore ensure for the operator one hand contractual responsibility for the complete propulsion throughout the lifetime of the ship.

Propulsion System Integration

Expectations to the system integrator as well as requirements from customers are:

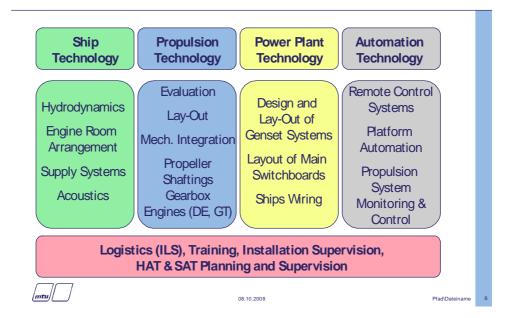
- Design and integration of ship propulsion systems into a ship system
- Solutions for respective technical and commercial demands with respect to the whole system and responsibility in one hand
- Co-ordination of system interfaces for the propulsion and machinery components
- Assistance during installation and setting to work
- Service and management of fault rectification during operation of the ship from one source independent of the individual component supplier

In the presentation the above will be detailed and various propulsion options for medium sized OPV's with comparison of performance values will be shown based on the example of the future demand of OPV's for Indian Navy and Coast Guard and also based on MTU long lasting experiences from various system integration projects.


Required Key competences of Propulsion System Integrator

For carrying out propulsion system integration certain competence is required. MTU Friedrichshafen is a supplier with this key-competences:

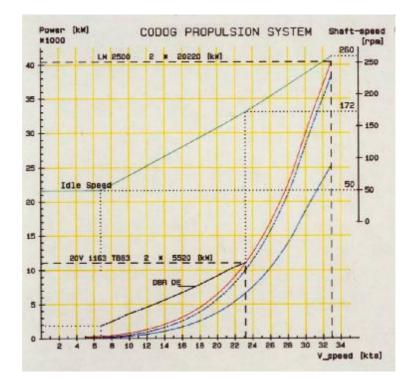
Propulsion System Integration Key Competences I



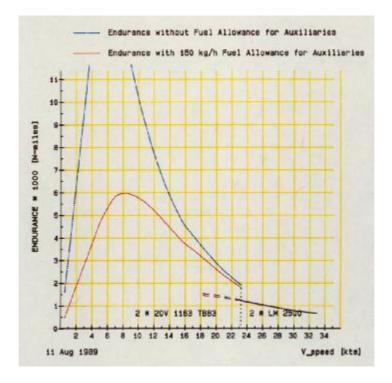
Propulsion System Integration Key Competences II

Overview of the technical aspects and fields for propulsion system integration

Propulsion System Integration

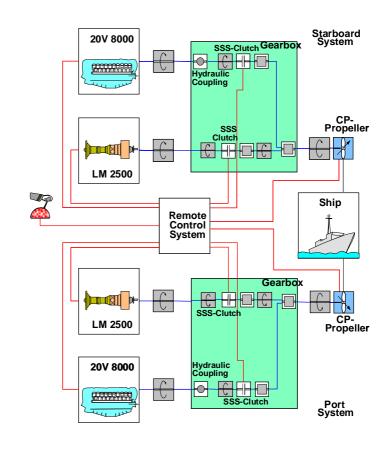


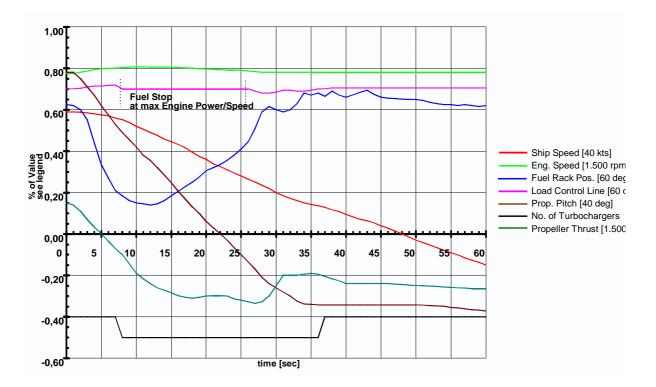
In above table the various fields for propulsion system integration is shown. In particular the following tasks must be performed:

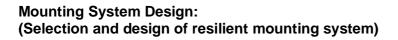

- Power demand, ship speed and endurance predictions
- Evaluation of suitable system components and recommendations for selection
- Manoeuvre simulations incl. crash stop calculations
- Mechanical and Electronical Integration
- Propulsion Train Vibration Analysis
- Acoustic analysis and optimisation of the propulsion system
- Consultancy for supply system layout
- Compete Integrated Platform Management System (IPMS)
- Integrated Logistic Services incl. Training

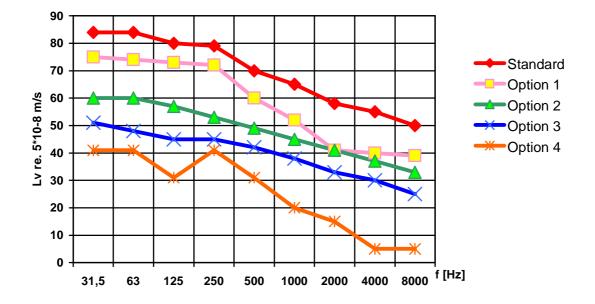
Examples of System Integration tasks are show below:

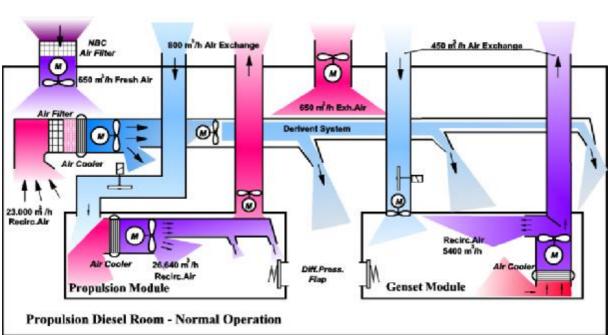
Determination of required power and ship speed prediction:

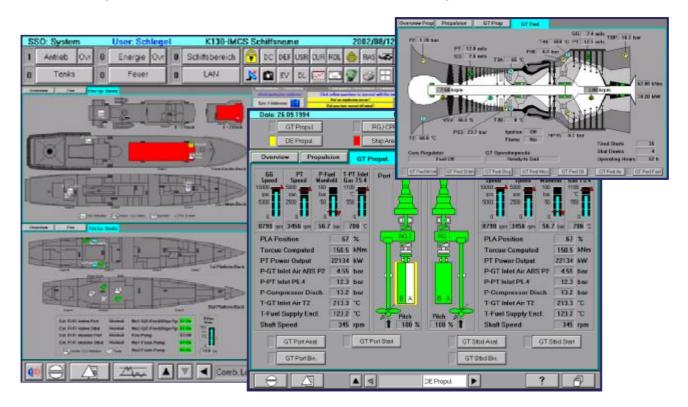

Endurance Calculation:


Ship Manoeuvre Simulation:


Simulation model comprising:


- Diesel Engine
- Gas turbine
- Gearbox
- Propeller
- Ship characteristics


Example Crash Stop simulation


The diagram is showing possible structure borne noise levels depending on mounting system design. Shown is a comparison of from standard single resilient to special double resilient mounting system including sound enclosure.

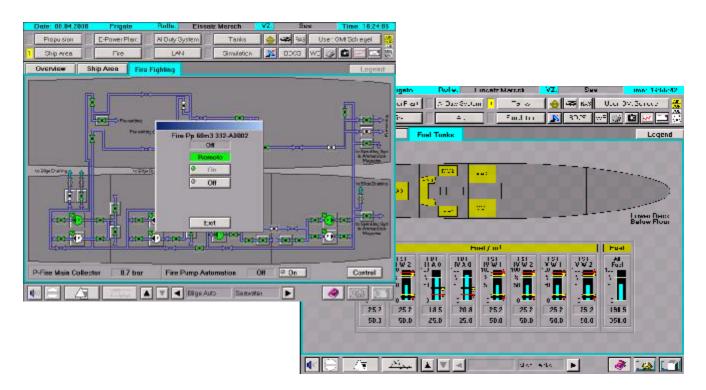
Supply System Design: (Example Engine Room Ventilation System with NBC Condition)

Propulsion Plant Automation:

(Example pages: Ship area-, Propulsion plant- and GT- monitoring)

Extensions and Options in the responsibility of System Integrator with respect to Propulsion Plant Automation:

- **Consoles** Tailored to application and customer specific requirements.
- Machinery Telegraph System MTS Emergency back-up system.
- *Electrical Power Management EPMS* Electric Power Management System with data link to the Ship Automation
- *Fire Detection System FDS* Fire Alarm and Detection System with data link to the Ship Automation
- Battle Damage Control System (BDCS)
 Tailored to application and customer specific requirements.
- **On Board Training System (OBTS)** Tailored to application and customer specific requirements.
- **Accessories** Approved and tested cables, sensors, solenoids, actuators, etc. to optimize interfacing and sourcing.


• Further extensions

Navigation systems, radar, ECDIS, communication systems, voyage data recorder, CCTV systems, with data link to the Ship Automation

Example "Killcard" BDCS and Overview OBTS:

		Lincelz Marcoli		Cara	1001 11:48							
	Vel AL COP I Comp Vol AJ Bilor JC J	unesson I Juniar Ratings Cabin	PU771612 PU551221	BilgFirz		1						
	Rrd DD II W S 3PA		PH754792	Fire II 4								
						Ċ.						
BDUS Engate GAP	יטט	UST noate: Room Into D			м							
	L 🕂 🖛 🗆	- San 🖌 🎼	Dangelous	Goods:								
	213 - 934	in a start of the second se	2:29 C over .	CS.16 91L	o di Niu S di Solia, Crgena 11	1333						
	seals.		0101400000	na) el Para								
Loridos Secto Date Time			Next Frend 15 Fortacio F 15 Fire Locker	iang Equipi	nene trijiž ka							
201106 2000 Det TF 20110 TF 200 Adv 20170 TF 200 Adv 20170 CF 201 Adv		X V Hada	To Fire Looker	est Vitá i co								
Tax are are			Nooten: N	Co do		.F						
PLUI Nam Overview	P = v	HELLER A	- I I I I I I I I I I I I I I I I I I I	100201200		n•						
PLOT J Main Overview			Available Ki Frankfi V H2	loares: De xun Du				Steel Share Ballet 1 & 20		Able it at	In the second	
SI kana shan a	Weiner (* 155		Leonoge VE 5	4H3 Decivior	Teen		## \$290 : 0.30	Sidd Start Brief: 10,00	Step appred 2 0.00	DODR. IN DO	ALLONG	mtu
Contraction (The second			 i e Comparte encoge Com 	noremero V	1.5			Ship Overvi	iew		Consider.	
and the second	bi	L_ ENGT	Second Flip						69007		den in egyment	Logie:
后来通行和3125×			Sitter II	e e Hese	- L	ant 📔 🚽					F PUTE/142	Traineo Actual
	KC Fire Durin D2	VH3 Decision Brown	Vitter Ste	L Coler 1	ina Ang I P	1.11					TENTGHT	TOTR.
The second se	Fightergeney Actions		10000 00000						Selection	Tipe		
In . bad a sum first	Evendor Ferrir IV-min	i n 4,9027	Vert D.242 📦		- 4	- L.	analas (revelation)	tud dama	Ap # Transp The	C'anci C'ang		List
District and the ARC is and the first state	E- or ty-min	in PA028	Vert D.74		4		tive Status Lugine,		Contraction of the			the second se
and a second second	El 1 de la critine Hun Chorik Errossure		L ted Loc 🕩			- 10 A	Biglis J F. Fopta 1	full-block store - Text not store				00000
	Equia E de Figning 1	and test	Faug FF 🛛 🕨		- K		rgine_1	stima - Test not done				
11 10 1	Equip Tre Fighine Bet Bricks Lo de	20112	E. uji∏ 12 ≱ ie Mot		3		C. Sat_fight_1	tul dans			sideystem .	A.Intern
Injured State	THE ADDR 14 CP					4.9	filesfirspra_t	not done			Dieneen	11
Command State Joard	Fer Allick Trice Hill b Control Units			- 100 C			dert_dragte_1 dert	10.001			Bridge 60%	
Boundedus/SOC	🗄 melaline Armulanti	n l'entre					Conjuly to A	Bate . Test hid dote			PUBER	
🔹 🕘 😑 Lxri	 Diagonas Carale Diagonas Carale 										HEER .	1
					Duteror mer							
					128							
					10							
							10		N Catyo			
				1000	letal.	12	Had to be	070	1221	E gal	5510	
				Control Inc.	1. 1. 2.				2.11		-	
				11								-

Example FIFI system and and Tank Monitoring system:

Examples / MTU references of Propulsion System Integration

MTU has successfully performed PSI for various propulsion systems

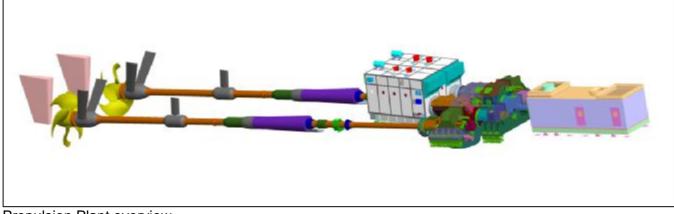
MTU accumulated PSI analysis know-how for both mechanical and electronical interfaces

MTU delivers and takes over the responsibility for hardware and services for complete propulsion systems

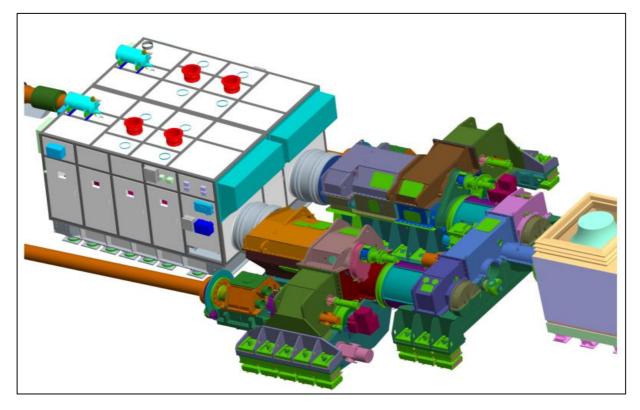
MTU is fully capable of dealing with GE LM2500/+/G4 engines as a certified marine gas turbine packager

References of Propulsion System Integration by MTU:

- KDX I, Republic of Korea Navy
- Milgem Corvette, Turkish Navy
- Corvettes "Baynunah", UAE Navy
- National Security Cutter, US Coastguard
- X-Craft "Sea Fighter", US Navy
- various Patrol Vessels


New Corvette Program Milgem (Turkish Navy):

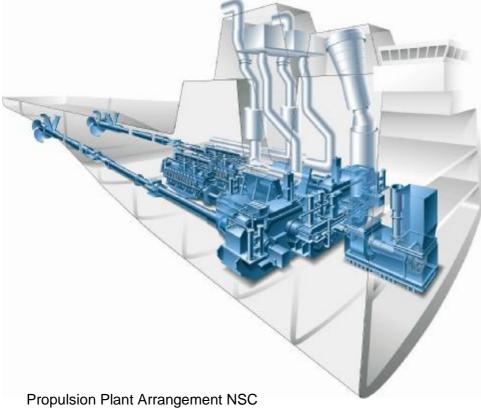
Length: 99 m, Beam: 14.4 m, Draft: 3.75 m Displacement: 2000 t , Max. Speed: > 29 kn



MTU Scope of Supply MILGEM:

- 2 x MTU16V 595 TE90 DE in sound enclosures
- 1 x MTU LM2500 GT in MTU module
- RENK CODAG gearboxes
- VA Tech Escher Wyss Shafting and Propellers
- Machinery Control System MCS-5 and RCS-5

Propulsion Plant overview


Detail of Propulsion Module "MILGEM"

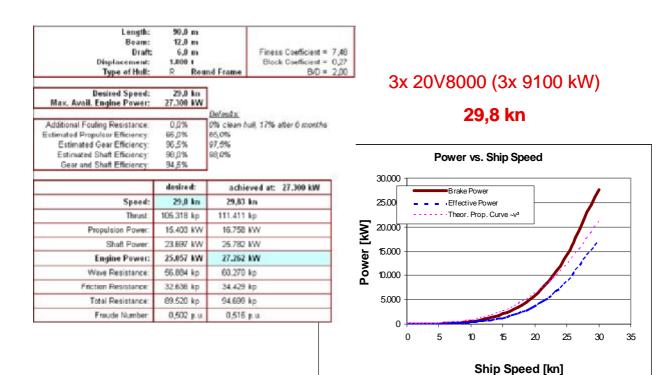
National Security Cutter (USCG):

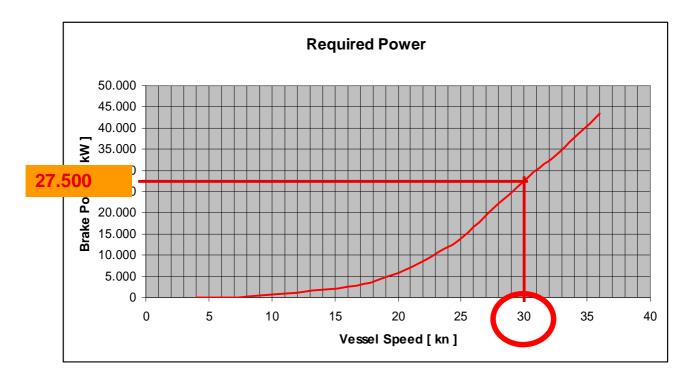
MTU Scope of Supply:

- 2 x 20V 1163 TB93 Diesel Engine
- 1 x GE LM2500 Gas Turbine
- Renk CoDAG gearboxes with Cross Connect
- 2 x RR Shaftlines and Propellers
- Propulsion Monitoring Control System and Remote Control System

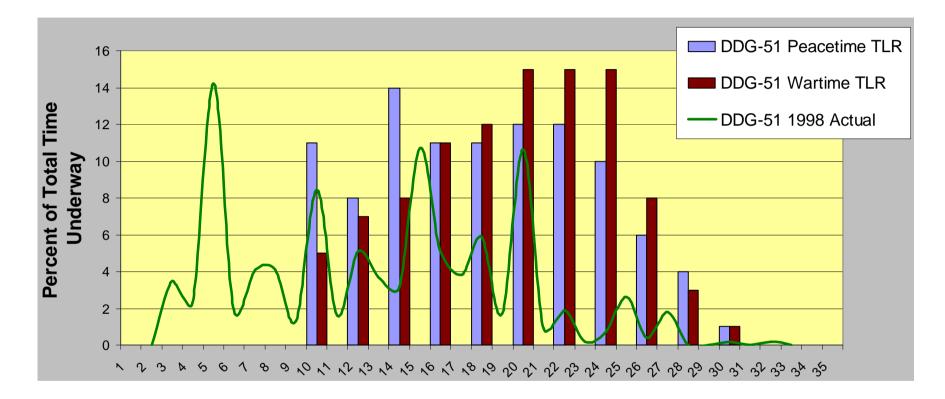
Propulsion plant selection

Criteria for propulsion plant selection:


- Required Vessel Speed / Power Requirement
- Through Live Costs (Invest costs, Fuel costs, Maintenance costs..)
- Manning considerations
- Space / Weight Restrictions
- Vessel Operating Profile
- Redundancy / Safety considerations
- Shock / Noise Requirements


A propulsion plant selection study using the new OPV planned by the Indian Coast Guard as an example was performed considering the following vessel data:

Length:	90 m
Beam:	12 m
Draft:	6 m
Displacement	1800 to


Calculation of power requirement based on vessel data:

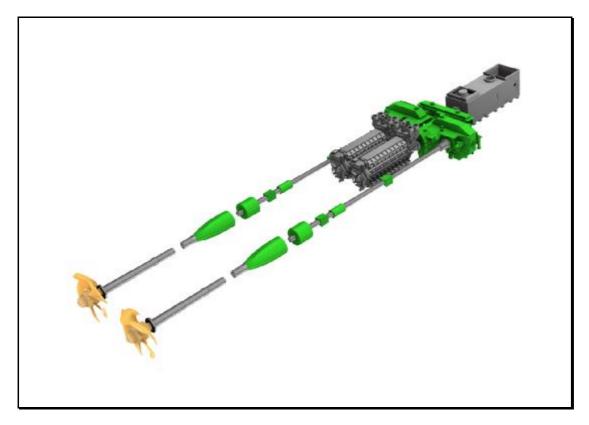
Resistance curve

Vessel Operating Profile (only example)

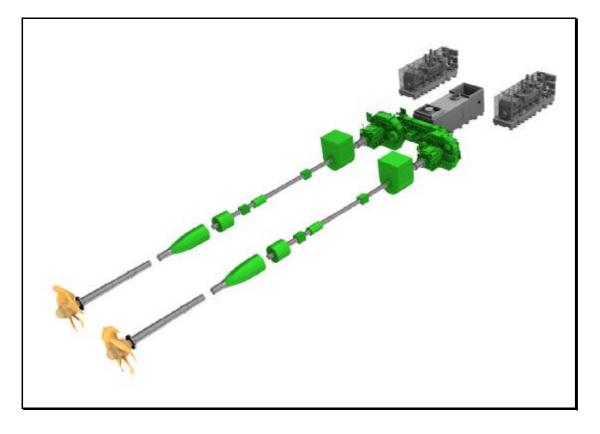
Design Requirements vs. Actual Profile

As power requirement increases with vessel speed on cubic law, vessel speed requirement should be questioned in detail during design phase.

Comparison of possible propulsion plant options

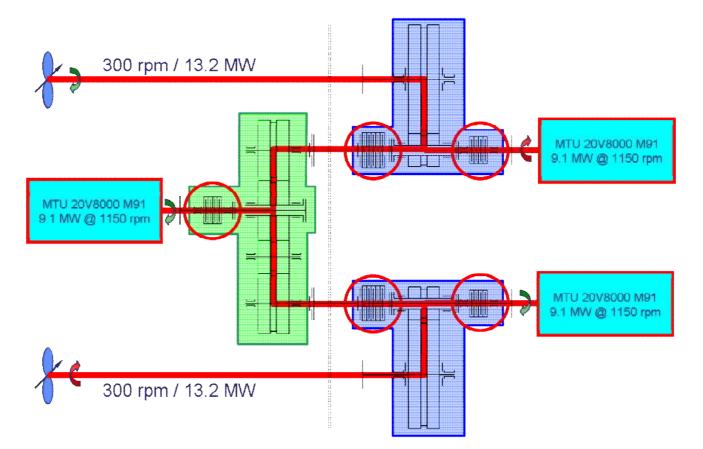

(Vessel speed versus budgetary costs and propulsion plant weight - only engines and gearboxes - without shafting and propeller)

Configuration	Engine-type	Power engine [kW]	Power total [kW]	<u>Estimated</u> Vessel speed [kn]	Estimated Budgetary cost (engines+gearboxes) [%]	<u>Estimated</u> weight (engines+gearboxes) [tons]	
2-shaft Direct Drive	2 x 20V 8000	9100	18200	26,5	100	140	
3-shaft Direct Drive	3 x 20V 8000	9100	27300	29,8	148	210	
2-shaft CODAD with Cross-connect GB	3 x 20V 8000	9100	27300	29,8	166	230	
2-shaft CODAD (U-Arrangement GB)	4 x 20V 8000	7200	28800	30,3	159	255	
2-shaft CODAD (U-Arrangement GB)	4 x 20V 8000	8200	32800	32,0	177	262	
2-shaft CODAD (U-Arrangement GB)	4 x 20V 8000	9100	36400	33,3	193	268	
2-shaft CODAG	2 x 16V4000	2880	25760	29,3	190	130	
with Cross-connect GB	1 x LM 2500	20000	23760	29,3	190		
3-shaft 2-shaft Diesel plus 1 Booster WJ	2 x 16V4000	2880	25760	29,3	155	67	
	1 x LM 2500	20000	23700		155		
3-shaft 2-shaft Diesel plus	2 x 20V 8000	7200	34400	32,6	223	143	
1 Booster WJ	1 x LM 2500	20000		02,0			


In the following table some Pros and Cons are shown for various propulsion plant configurations:

	"Pros"	"Cons"
Diesel medium speed	efficiency, endurance	power density
Diesel high speed	power density, efficiency	
Gas turbine	power density, high power output	efficiency, invest. cost
(Nuclear)	high output, AIP, endurance	investment cost, LCC
(Fuel cell)	noise signatures, AIP	invest. cost, low power output
	Combined Propulsion Syst	ems
CODAD	cruise + sprint, efficiency	power density
COGAG	cruise + sprint, power density	Investment cost, efficiency
CODOG	cruise + sprint, efficiency	investment cost
CODAG	cruise + sprint, power density	investment cost
All-electric with D/ E	LCC, efficiency	Investment cost, power density
All-electric with GT	power density + high output	Investment cost, LCC

CODAG propulsion plant on CPP:


CODELAG propulsion plant on CPP:

Redundancy and survivability considerations:

Combined propulsion plants offer some advantages with respect to redundancy and survivability which also must be considered when finally selecting the propulsion plant configuration.

As an example this is shown for the 3-engine / 2-shaft CODAD propulsion plant:.

Type of Damage	Remaining Operating Modes				
One diesel inoperable	Other diesel engines (one or two) operating on both propellers				
Two diesels inoperable	Third DE driving one or two propeller shafts				
Cross connect gear inoperable	Each front diesel drives its own propeller shaft				
One main gear and cross connect gear inoperable	Diesel on other main gear drives referring shaft				
Aft DE compartment flooded	Front DE can operate without restrictions				
Front DE compartment flooded	Aft DE driving one or two propeller shafts				

Summary of Customer requirements and key selection criteria for propulsion plant:

These are:

- Invest cost (Value for money)
- Life Cycle Costs, dominated by fuel consumption
- Reliability / Availability / Maintainability
- Low-load operation capability
- Capability to run in single engine operation efficiently
- Good manouevring characteristics
- Compact design, saving space for mission payload and/or crew
- Logistic support (parts, documentation, training, service)
- Logistic commonality with other vessels in the fleet
- Redundancy
- References

Conclusion

- The propulsion system is elemental for the vessel's operational economy and flexibility.
- Careful system analysis, careful selection of the propulsion plant components and respective integration into the system "ship" is a vital requirement for the customer.
- Propulsion system integration requires competent and experienced propulsion system integrator with know-how for both mechanical and electronical/automation components integration.

Customer Advantages and why Propulsion System Integration by MTU

- One hand contractual responsibility for the complete propulsion system, both for the mechanical systems and components as well as for electrical/automation system and components
- Proven system integration know-how and experience
- Full assistance from design phase to commissioning of the vessel and throughout the further vessel lifetime
- Single source logistics for the Navy
- Holistic problem solving during commissioning, trials and the in-service period
- Reduction of technical and commercial risk, necessary manpower and administration complexity on the shipyards side

MTU takes over the system integrator role when also being selected as propulsion system supplier

MTU can be Your Partner for:

Propulsion System Integration

Contact:

marine@mtu-online.com