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Simulation of flow past underwater vehicle hull form continues to grow rapidly in the field of marine hydrodynamics. 
With the advent of high speed computers, significant progress has been made in predicting flow characteristics 
around any given hull form. Although minimization of drag is one of the most important design criteria, not much 
effort has been given to determining viscous drag, an important parameter in the development of a new design. This 
research applies finite volume method for computation of viscous drag based on Reynolds-averaged Navier-Stokes 
(RANS) equations. Computations are performed on a bare submarine hull DREA and six axisymmetric bodies of 
revolution based on Gertler’s geometry with a number of Length-Diameter (L/D) ratios ranging from 4 to 10. Two-
equation eddy-viscosity turbulence model, i.e., Shear Stress Transport (SST) k-ω turbulence model is used to simulate 
turbulent flow past those bodies and compute drag force. Finally, computed results are compared with published 
numerical/experimental results obtained by other researchers. The computed results show good agreement with the 
experimental measurements. 
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INTRODUCTION 
Applications of computational fluid dynamics (CFD) to the 
maritime industry continue to grow as this advanced 
technology takes advantage of the increasing speed of 
computers. In the last two decades, different areas of 
incompressible flow modeling including grid generation 
techniques, solution algorithms and turbulence modeling, and 
computer hardware capabilities have witnessed tremendous 
development.  In view of these developments, computational 
fluid dynamics (CFD) can offer a cost-effective solution to 
many problems in underwater vehicle hull forms.  However, 
effective utilization of CFD for marine hydrodynamics 
depends on proper selection of turbulence model, grid 
generation and boundary resolution.   
 
Turbulence modeling is still a necessity as even with the 
emergence of high performance computing since analysis of 
complex flows by direct numerical simulations (DNS) is 
untenable.  The peer approach, the large-Eddy simulation 
(LES), still remains expensive.  Hence, simulation of 
underwater hydrodynamics continues to be based on the 
solution of the Reynolds-averaged Navier-Stokes (RANS) 
equations. Various researchers used turbulence modeling to 
simulate flow around axisymmetric bodies since late seventies.  

Patel and Chen (1986) made an extensive review of the 
simulation of flow past axisymmeric bodies. Choi and Chen 
(1990) gave calculation method for the solution of RANS 
equation, together with k- ε turbulence model.  Sarkar et al. 
(1997) used a low-Re k-ε model of Lam and Bremhorst (1981) 
for simulation of flow past underwater axisymmetric bodies. In 
this research, SST k-ω model is used to simulate complete 
turbulent flow past underwater vehicle hull forms. The body 
used for this purpose is a standard DREA (Defence Research 
Establishment Atlantic) bare submarine hull (Baker, 2004) as 
shown in Fig. 1 and six axisymmetric bodies of revolution 
based on Gertler geometry (Gertler, 1950). 
 

Fig. 1. DREA bare submarine hull 
 
THEORETICAL FORMULATION 
For the incompressible flow past an axisymmetric underwater 
vehicle hull form, the continuity equation in cylindrical co-
ordinate is given by: 
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where x is the axial coordinate, r is the radial coordinate, u  is 
the axial velocity and v is the radial velocity. The source term 
Sm is the mass added to the continuous phase from the 
dispersed second phase and any user-defined sources.   
 
Also, the axial and radial momentum equations are given by: 
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where, p = static pressure, µ = molecular viscosity, ρ = density, 
Fx & Fr are external body forces and  
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The Shear-Stress Transport (SST) k-ω model 
The SST k-ω turbulence model is a two-equation eddy-
viscosity model developed by Menter (1994)] to effectively 
blend the robust and accurate formulation of the k-ω model in 
the near-wall region with the free-stream independence of the 
k-e model in the far field. To achieve this, the k-e model is 
converted into a k-ω formulation. The SST k-ω model is 
similar to the standard k-ω model, but includes the following 
refinements: 
• The standard k-ω model and the transformed k-e model 

are both multiplied by a blending function and both 
models are added together.  

• The blending function is designed to be one in the near-
wall region, which activates the standard k-ω model, and 
zero away from the surface, which activates the 
transformed k-e model. 

• The SST model incorporates a damped cross-diffusion 
derivative term in the ω equation. 

• The definition of the turbulent viscosity is modified to 
account for the transport of the turbulent shear stress. 

• The modeling constants are different. 
 
These features make the SST k-ω model more accurate and 
reliable for a wider class of flows (e.g., adverse pressure 
gradient flows, airfoils, transonic shock waves) than the 
standard k-ω model. 
 
The shear-stress transport (SST) k-ω model is so named 
because the definition of the turbulent viscosity is modified to 
account for the transport of the principal turbulent shear stress.  

The use of a k-ω formulation in the inner parts of the boundary 
layer (Schlichting, 1966, Baldwin and Lomax,  
1978) makes the model directly usable all the way down to the 
wall through the visous sub-layer, hence the SST k-ω model 
can be used as a Low-Re turbulence model without any extra 
damping functions. The SST formulation also switches to a k-ε 
behaviour in the free-stream and thereby avoids the common k-
ω problem that the model is too sensitive to the inlet free-
stream turbulence properties. It is this feature that gives the 
SST k-ω model an advantage in terms of performance over 
both the standard k-ω model and the standard k-ε model. Other 
modifications include the addition of a cross-diffusion term in 
the ω equation and a blending function to ensure that the 
model equations behave appropriately in both the near-wall 
and far-field zones. 
 
Transport equations for the SST k-ω model are given by: 
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In these equations, 

kG~  represents the generation of turbulence 
kinetic energy due to mean velocity gradients, Gω represents 
the generation of ω, Гk and Гω represent the effective 
diffusivity of k and ω, respectively, Yk and Yω represent the 
dissipation of k and ω due to turbulence, Dω represents the 
cross-diffusion term, Sk and Sω are user-defined source terms. 
 
Bounadry Conditions 
Since the geometry of an axisymmetric underwater hull is, in 
effect, a half body section rotated about an axis parallel to the 
freestream velocity, the bottom boundary of the domain is 
modeled as an axis boundary. Additionally, the left and top 
boundaries of the domain are modeled as velocity inlet, the 
right boundary was modeled as an outflow boundary, and the 
surface of the body itself was modeled as a wall.  

 

Viscous Drag 
The viscous drag of a body is generally derivable from the 
boundary-layer flow either on the basis of the local forces 
acting on the surface of the body or on the basis of the velocity 
profile of the wake far downstream. The local hydrodynamic 
force on a unit of surface area is resolvable into a surface 
shearing stress or local skin friction tangent to the body surface 
and a pressure p normal to the surface. The summation over 
the whole body surface of the axial components of the local 
skin friction and of the pressure gives, respectively, the skin-
friction drag Df and the pressure drag Dp which for a body of 
revolution in axisymmetric flow become 

∫= ex

wwf dxrD
0

cos2 ατπ  
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∫= ex

wp dxprD
0

sin2 απ  

where rw is the radius from the axis to the body surface, α is 
the arc length along the meridian profile, and xe is the total arc 
length of the body from nose to tail. 
 
The sum of the two drags then constitutes the total viscous 
drag, D, i.e., D=Df +Dp 
 
The drag coefficient CD  and the pressure coefficient, Cp based 
on some appropriate reference area A are given by:  

AU
DC D 25.0 ∞

=
ρ

  and  
AU

pp
C p 25.0 ∞

∞−
=

ρ
 

where p∞ is pressure of free stream and U∞ is free stream 
velocity. 
 
METHODOLOGY 
Computational Method and Domain 
The axisymmetric problem with appropriate boundary 
conditions is solved over a finite computational domain.  The 
computational domain extended 1.0L upstream of the leading 
edge of the axisymmetric body, 1.0L above the body surface 
and 2.0L downstream from the trailing edge; where L is the 
overall length of the body.  The solution domain is found large 
enough to capture the entire viscous-inviscid interaction and 
the wake development.  
 
A finite volume method (Versteeg and Malalasekera, 1995, 
Cebeci et al, 2005, Rahman, 2008) is employed to obtain a 
solution of the Reynold’s averaged Navier-Stokes equations.  
The coupling between the pressure and velocity fields was 
achieved using PISO algorithm.  A second order upwind 
scheme was used for the convection and the central-
differencing scheme for diffusion terms.   
 
Geometry of Axisymmetric Underwater Vehicle 
(AUV) Hull Form  
Axisymmetric bodies are ideal candidates for a parametric 
study with their easily defined geometry, straightforward grid 
generation, and available experimental data. At first the bare 
submarine hull DREA and then a systematic series of 
mathematically defined bodies of revolution is studied.  
 
Geometry of Bare Submarine Hull DREA  
The parent axisymmetric hull form with maximum length, l 
and diameter, d can be divided into three regions, i.e., nose, 
mid body and tail.  
 
(i ) The nose can be represented by: 
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( ii ) The mid body (circular cylinder) is given by: 
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(iii) The tail is represented by: 

131;31
182

)( 2
3 ≤≤−⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −−−=

l
x

l
d

l
d

l
x

d
l

l
d

l
xr  

Geometry of Axisymmetric Body of Revolution 
Each body is defined by a sixth-degree polynomial [6]. Six 
axisymmetric bodies were generated with length-to-diameter 
ratios (L/D) ranging from four to ten. 

 
(a) 

(b) 

 
Fig. 2. (a) Grid of flow domain around DREA bare 
submarine hull (b) Enlarged view of grid near stern side 

 
Grid Generation 
A body-fitted H-type grid is used.  In external flow simulations 
using SST k-ω the computational grid should be in such a way 
that sufficient number of grid points lie within the laminar 
sublayer of the ensuing boundary layer.  In order to ensure this, 
usually the y+ criterion is used.  y+ is a non-dimensional 
distance from the body wall and is defined as y+ = yuτ /ν, 
where uτ = τω/ρ is friction velocity and ν  kinematic viscosity.  
The y+ criterion states that first grid point normal to the body 
wall should not lie beyond y+ = 4.0 and for reasonable 
accuracy at least five points should lie with in y+ = 11.5 (Lam 
and Bremhorst1981).  A typical grid layout around bare 
submarine hull is shown in Fig. 2. 
 
RESULTS AND DISCUSSION 
The computation of drag coefficient for bare submarine hull 
DREA is performed at Reynold’s number of 2.3 x 107and 
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shown in Table 1. From the table it is seen that the computed 
value agrees well with the experimental result (Baker, 2004).  
Table 2 shows the comparison of predicted and experimental 
drag coefficients (White, 1977 and White, 1978) for different 
L/D ratios of axisymmetric body of revolution at Reynold’s 
No. of 2.0x107. There exists a close agreement between them.   

 
Table 1. Comparison of computed drag coefficients with 
experimental values for submarine hull DREA  
 

 CD (x10-

3) 
(Present) 

CD (x10-3) 
(Exp) 

Submarine 
hull DREA 

0.000104 0.00123±0.000314 
 

 

C
D
 

 
 
Fig.3. Time history of drag coefficient  

 

 
 
Fig.4. Contours of pressure around bare submarine hull 
DREA (filled) 

 
Time history of drag coefficient is shown in Fig. 3. Contours 
of pressure around bare submarine hull DREA is shown in Fig. 
4. Fig. 5 shows the plot of velocity vectors around the hull.  
 
 
 
 

Table 2. Comparison of computed drag coefficients with 
experimental values for different L/D ratios of AUV. 

L/D CD (x10-3) 
(Present) 

CD (x10-3) 
(Exp) 

4 3.435 3.208 
5 3.140 2.988 
6 3.020 2.848 
7 2.958 2.758 
8 2.893 2.718 

10 2.815 2.703 
 
(a) 

 

(b)  
 
Fig. 5. (a) Plot of velocity vectors  around DREA (b) 
enlarged view of velocity vectors near stern 
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Fig. 6. Variation of pressure coefficient, Cp around bare 
submarine hull DREA 
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Fig. 7. Variation of skin friction coefficient on the surface of 
DREA 
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Fig. 8. Variation of radial wall shear stress for DREA 
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Fig. 9. Variation of skin friction coefficient on the surface of 
DREA 

 

 
Fig. 10. (a) Contour of pressure around the surface of AUV 
(L/D=6)  
 

 
 

 
 

Fig. 11. (a) Plot of velocity vector  (b) Enlarged view of 
velocity vector near body 

 
The pressure coefficient, Cp around the hull is shown in Fig. 6. 
At first, the value of pressure coefficient decreases near the 
leading edge after which it increases and becomes constant 
around the parallel middle body. Near after body the curve 
dips for a while and then moves up. The curve of wall shear 
stress as shown in Fig. 7 has opposite tendency. The curve of 
radial shear stress as shown in Fig. 8 has convex shape at the 
after body of the hull.  The nature of the curve of skin friction 
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coefficient as shown in Fig. 9 follows similar trend of the 
curve of wall shear stress which is usual. 
 
Contour of pressure, velocity vectors, variations of pressure 
coefficient, wall shear stress, radial wall shear stress and skin 
friction of AUV having L/D ratio of 6 are shown in Figs. 10-
15. Trends of curves are almost similar to those of submarine 
hull except little changes near nose and tail due to different 
shapes. From enlarged view of velocity vectors, velocity 
changes within the boundary layer and vortex near stern are 
clearly visible as shown in Fig. 11. 
 
The curve of pressure coefficient is almost symmetric about 
the midpoint of AUV except at two ends. Each of the curves of 
wall shear stress (shown in Fig. 13) and skin friction 
coefficient (shown in Fig. 15) have a saddle at the middle 
portion of the body. 
 

C
oe

ff
ic

ie
nt

 o
f P

re
ss

ur
e,

 C
P 

Fig. 12. Variation of pressure coefficient around AUV (L/D = 
6) 
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Fig. 13. Variation of wall shear stress on AUV (L/D =6) 
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Fig. 14. Variation of radial wall shear stress on AUV (L/D =6) 
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Fig. 15. Variation of skin friction coefficient on AUV (L/D 
=6) 
 

CONCLUSION 
Numerical computation of viscous drag for axisymmetric 
underwater vehicle is performed in this research using finite 
volume method based on Reynold’s averaged Navier-Stokes 
equations. Shear Stress Transport (SST) k-ω model has been 
used to simulate complete turbulent flow past axisymmetric 
underwter body. The computed results show well agreement 
with published experimental measurements. 
 
REFERENCES 
Baker, C., “Estimating Drag Forces on Submarine Hulls”, 
Report DRDC Atlantic CR 2004-125, Defence R&D Canada – 
Atlantic, (2004). 
Baldwin, B.S. Lomax, H., “Thin Layer Approximation and 
Algebraic Model for Separated Turbulent Flows”, AIAA 16th 
Aerospace Sciences Meeting, (1978). 
Cebeci, T., Shao, J.R., Kafyeke, F., Laurendeau, E., 
“Computational Fluid Dynamics for Engineers”, Horizons 
Publishing Inc., Long Beach, California (2005). 



 

WMTC 2009 Karim 7 

Choi, S. K. Chen C. J., “Laminar and Turbulent Flows Past 
Two Dimensional and Axisymmetric Bodies”, Iowa Institute of 
Hydraulic Research, IIHR Report 334-II, (1990). 
Department of Research and Development Canada- Atlanta, 
National Defense, “Flow Visualization Test of DREA Standard 
Submarine Model”, October-November, Ottawa, (1988). 
Gertler M., “Resistance Experiments on A Systematic Series of 
Streamlined Bodies of Revolution for Application to The 
Design of High Speed Submarines”, DTMB Report C-297, 
(1950). 
Lam, C.K.G., Bremhorst K., “A Modified Form of The k- e 
Model for Predicting Wall Turbulence”, ASME Journal of 
Fluid Engineering, Vo.103, p. 456, (1981). 
Lin, C.W., Percival, S. and Gotimer, E.H., “Viscous Drag 
Calculations for Ship Hull Geometry”, Technical Report, 
Design Evaluation Branch, Hydromechanics Directorate, 
David Taylor Model Basin, Carderock Division Naval Surface 
Warfare Center, Bethesda, MD USA, (1995). 
Menter, F. R., “Two-Equation Eddy-Viscosity Turbulence 
Models for Engineering Applications”, AIAA Journal, 
32(8):1598-1605, August, (1994). 
Patel, V. C., Chen, H.C., “Flow Over Tail And In Wake Of 
Axisymmetric Bodies: Review Of The State Of The Art” 
Journal of Ship Research, Vol. 30, No. 3, pp. 202-314, (1986). 

Rahman, M. M. “Application of Finite Volume Method for 
Solving Fluid Structure Interaction Problem, M.Phil thesis, 
Dept. of Mathematics, BUET, (2008). 
Sarkar, T., Sayer, P. G., Fraser, S. M., “A Study Of 
Autonomous Underwater Vehicle Hull Forms Using 
Computational Fluid Dynamics”, International Journal for 
Numerical Methods in Fluids, Vol.  25, pp. 1301-1313, (1997). 
Schlichting, H., “Boundary Layer Theory”, McGraw-Hill, New 
York, (1966). 
Versteeg, H. K., Malalasekera, W., “An Introduction to 
Computational Fluid Dynamics The Finite Volume Method”, 
Longman Scientific and Technical, U.K. (1995). 
White, N. M., “A Comparison Between a Simple Drag 
Formula and Experimental Drag Data for Bodies of 
Revolution”,  DTNSRDC Report 77-0028 (1977). 
White, N. M., “A Comparison Between the Drags Predicted 
By Boundary Layer Theory and Experimental Drag Data for 
Bodies of Revolution”, DTNSRDC SPD-784-01 (1978).  
 
ACKNOWLEDGEMENT 
Authors gratefully acknowledge Bangladesh University of 
Engineering and Technology (BUET) for all the support to 
perform this research. 

 


