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Abstract - A novel work management framework for 

offshore floating systems has been proposed in this 

paper that comprises of Deep Q-Reinforcement 

Learning (DQN) problem formulation as a solution to 

multi-objective optimisation problem for maintenance 

activities of Floating Production Storage and 

Offloading Facilities (FPSOs). It has been 

demonstrated that DQN has the potential to be 

employed to develop a dynamic Work Management 

System that adjusts maintenance activities by 

achieving optimal path for carrying out activities that 

liquidates the risks to asset’s performance depending 

on the changes achieved on the asset condition based 

on the activities completed. This potentially maximise 

resource utilisations, enable enhanced asset condition 

and lead to reduction of emissions from the asset and 

supplement the Regulatory oversight requirements. 
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1. INTRODUCTION 

An investigation of the recent advancements in 

modelling and optimisation techniques to develop 

maintenance strategies for offshore floating systems 

have been carried out in [1], [2] and have demonstrated 

that the current literature does not incorporate site 

constraints of the asset related to offshore resource 

availability for the maintenance activity, which is a 

limitation of the existing state-of-the art maintenance 

frameworks. Also, there is lack of evidence to support 

that dynamic and autonomous resource allocations for 

maintenance activities take place in the offshore 

maintenance planning systems.  

In summary, the following contributions are made in this 

paper:  

A novel work management framework has been 

proposed that comprises of Deep Q-Reinforcement 

Learning (DQN) problem formulation as a solution to 

multi-objective optimisation problem for maintenance 

activities of Floating Production Storage and Offloading 

Facilities (FPSOs). The framework enables carrying out 

activities that have minimal site constraints, considering 

the design features, operating conditions, deteriorations, 

consequences of not doing the activities and time 

required to complete the activities, to get higher 

weighted sum of the completion times at short time as 

possible, whereby achieving higher resource utilisations. 

A greedy algorithm benchmarks the performances of 

DQN model and a hybrid model comprising of greedy 

and DQN parameters. This formulation enables 

achieving the optimal path for carrying out activities that 

liquidates the risks to the asset’s performance, which 

would supplement the Regulatory oversight 

requirements of the FPSO. 

 

2. MAINTENANCE SYSTEM FORMULATION 

 

 

Figure 1. Maintenance system formulation 
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Figure 1 indicates an overview of maintenance system 

formulation. Maintenance processes, main influencing 

factors, performance indicators and analyses techniques 

formulate a series of maintenance strategies to achieve 

the desired goals, with feedback loop for continuous 

improvement of the maintenance program. The 

maintenance strategies develop tasks that could be 

considered to restore the desired functionality. 

Deep Learning mathematical programming optimisation 

technique for aero-propulsion system has been employed 

by [3], whereas an unsupervised machine learning 

optimisation for offshore wind turbines was used by [4], 

a mathematical nondominated sorting genetic algorithm 

by [5] and a deterministic non-linear programming 

problem by [6].  

Weighted sums approach for selective maintenance 

problem of multi-component systems was employed in 

the works of [7] and constrained optimisation 

mathematical programming technique for continuous 

and discontinuous operating systems was utilised in the 

works of [8]. Bayesian network with Monte Carlo 

simulation technique for marine pipelines has been 

employed by [9], and mixed integer non-linear 

programming based selective maintenance optimisation 

for engineering systems has been detailed by [10]. 

Sea current velocity predictions made by convolutional 

neural learning model employing residual learning with 

attention strategy has been proposed by [11], whereas 

marine heatwave prediction using long short-term 

memory recurrent neural network has been proposed by 

[12]. Deep learning optimisation model for wind turbine 

maintenance planning, combining variational mode 

decomposition, convolution neural network, long short-

term memory network and full-connected network has 

been proposed by [13].  

Opportunistic maintenance of offshore wind relying on 

market-based availability criteria rather than 

time/energy-based availability has been proposed by 

[14], whereas closed-loop maintenance strategy 

optimisation method has been proposed by [15].  

 

3. MULTI-OBJECTIVE PROBLEM  

 

Figure 2. Profile, dimensions of modelled FPSO [2] 

 

A FPSO main deck that has been modelled in the works 

of [2] with the principal dimensions as indicated in 

Figure 2 has been employed in this work.  

The decision variables considered were the design 

features, operating conditions, deteriorations 

experienced and the consequences of not doing the 

maintenance activities, detailed by [2]. The main 

objective was to maximize the maintenance personnel 

resource utilization and enable FPSO condition 

enhancement, considering the priorities with respect to 

design features, operating conditions, deteriorations, and 

the consequences of not doing the maintenance, taking 

into consideration the personnel resource time required 

for activity completion. The personnel resource 

utilisation directly relates to the key performance 

indicators of manpower costs, activity completion, cost 

related to activity duration and increase in efficiency, 

whereas the FPSO condition enhancement relates to the 

availability, reliability, safety and regulatory 

compliances of the asset. 

 

 

4. DQN SOLUTION FORMULATION  

The DQN problem statement has been defined as to carry 

out activities that have minimal site constraints, so as to 

get higher weighted sum of the completion times at short 

time as possible, which leads to higher resource 

utilization. The goal is to achieve the best trade-off 

between the turnaround time for the activities and 

liquidating the risks to the asset’s performance, based on 
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completion of activities in the FPSO work management 

system (WMS). 

 

4.1 Implementation of problem formulation  

 

 

Figure 3: Multi-objective Optimisation with DQN 

 

The Figure 3 provides an overview of formulation of 

multi-objective model with DQN, for FPSO main deck 

maintenance. 

The DQN problem formulation model for FPSO main 

deck maintenance has been indicated in Figure 4 below. 

 

Figure 4: DQN Problem formulation model for 

FPSO main deck maintenance 

 

 

The DQN Solution Formulation for Maintenance 

Activities involves: 

4.1.1 State Space  

FPSO Main Deck has been split into a 5 x 5 grid, which 

will give 25 possible locations on the Main Deck. For 

these grid locations the priority of the objective function 

over the time required to complete task (P[i] / T[i]) has 

been assigned from 0.1 with increments of 0.1 up to the 

maximum value of 2.5 that was found for the Safety & 

Financial Risks, from the Greedy Algorithm. 

 

4.1.2 Action Space 

The agent comes across one of the 500 states and takes 

an action. The Action is to move in a direction along the 

FPSO, or to decide to remove resource and allocate 

resource at a location. The agent has six possible actions, 

namely, move in a direction -Aft/Fwd/Stbd/Port-, 

Resource Removal and Resource Allocation. 

 

4.1.3 Rewards 

Points considered while deciding the rewards and 

penalties were that the agent should receive a high 

positive reward for a successful resource allocation, as 

this action was highly desired. By trial and error, a +20 

points reward was assigned for a successful resource 

allocation. Agent should be penalized if it tries to 

allocate or allocate resources at wrong locations. By trial 

and error, a -10 points penalty was assigned for an illegal 

resource allocation or removal. Agent should receive a 

slight negative reward for every site constraint hit and 

for not moving anywhere, and for not making it to the 

assigned location for resource removal/ allocation after 

every time-step. By trial and error, a -1-point penalty was 

assigned for these actions. 

 

5. PERFORMANCE EVALUATION  

After enough random exploration of actions, the Q-

values tend to converge serving our agent as an action-

value function, which it could exploit to pick the most 

optimal action from a given state. The Hyperparameters 

for the DQN model includes, ⍺, 𝛾, 𝜀, whereby, ⍺ is the 

learning rate (0< ⍺ ≤1). This is the extent to which the 

Q-values are being updated in every iteration. 𝛾 is the 

discount factor (0≤ 𝛾 ≤1). This determines how much 

importance we want to give to future rewards. A high 

value for the discount factor (close to 1) captures the 

long-term effective award, whereas a discount factor of 

0 makes our agent consider only immediate reward, 

hence making it greedy. ε the randomness factor (0< ε 

≤1) determines how much exploration we want to have, 

to prevent the action from possible overfitting. Lower ε 
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value would result in more exploring and making 

random decisions. Considering the afore-mentioned 

points, the hyperparameters ⍺, 𝛾, 𝜀 have been varied 

between 0.1, 0.6 and 1, to generate the Greedy, Hybrid 

of Greedy/DQN and DQN models. 

The agent for Greedy, Hybrid of Greedy/DQN and DQN 

models were evaluated on the following features: 

Average number of timesteps per episode – the smaller 

number of timesteps per episode means agent take 

minimum steps/shortest path to reach the target.  

Average rewards per timestep – the larger the reward 

means the agent is doing the right thing. In this work, as 

both timesteps and penalties are negatively rewarded, a 

higher average reward would mean that the agent 

reaches the target as fast as possible with the least 

penalties. i.e. the solution provides execution of 

maintenance activities having minimal site constraints 

leading to better resource utilisation, and completion of 

activities. 

Average number of penalties per episode – the smaller 

the number ideally be zero or very close to zero, the 

better performance of agent. 

The evaluation of Greedy, Hybrid of Greedy & DQN and 

DQN models for up to 25,000 training episodes have 

been carried out. 

 

5.1 Evaluation of agent’s performance 

 

Figure 5: Learning curves of Greedy, Hybrid and 

DQN models 

 

In the simulations in Figure 5, learning curves of Greedy, 

Hybrid and DQN models with respect to the number of 

timesteps taken to reach destination and the rewards per 

timestep, the variation of average timesteps per episode 

and the variation of average rewards per timestep, for the 

Hybrid and DQN models with respect to Greedy model 

have been illustrated. 

It has been noted that overall, the Hybrid model with 

hyperparameters of α = 0.1, γ = 0.6, ε = 0.1 and the DQN 

model with hyperparameters of α = 0.1, γ = 1.0, ε = 0.1 

achieve better results when compared with the Greedy 

model with hyperparameters of α = 0.1, γ = 0.1, ε = 0.1, 

as the training episode increases, towards task 

completion time and liquidating the risks to the asset’s 

performance.  

 

6. DISCUSSION AND CONCLUSION 

A novel work management framework has been 

proposed that comprises of DQN problem formulation as 

a solution to multi-objective optimisation problem for 

maintenance activities of FPSOs. It has been 

demonstrated that DQN has the potential to be employed 

to develop a dynamic WMS that adjusts maintenance 

activities by achieving optimal path for carrying out 

activities that liquidates the risks to asset’s performance 

depending on the changes achieved on the asset condition 

based on the activities completed. This potentially 

maximise resource utilisations, enable enhanced asset 

condition and lead to reduction of emissions from the 

asset and supplement the Regulatory oversight 

requirements. 
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